[1] KIM D, YUM B J. Collaborative Filtering Based on Iterative Principal Component Analysis. Expert Systems with Applications, 2005, 28(4): 823-830.
[2] SARWAR B M, KARYPIS G, KONSTAN J A, et al. Application of Dimensionality Reduction in Recommender System-A Case Study[C/OL]. [2018-03-25]. http://ai.stanford.edu/~ronnyk/WEBKDD2000/papers/sarwar.pdf.
[3] KOREN Y. Factorization Meets the Neighborhood: A Multifaceted Collaborative Filtering Model // Proc of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2008: 426-434.
[4] LI J, CHEN C C, CHEN H L, et al. Towards Context-Aware Social Recommendation via Individual Trust. Knowledge-Based Systems, 2017, 127: 58-66.
[5] MA H, YANG H X, LYU M R, et al. SoRec: Social Recommendation Using Probabilistic Matrix Factorization // Proc of the 17th ACM Conference on Information and Knowledge Management. New York, USA: ACM, 2008: 931-940.
[6] YANG X W, GUO Y, LIU Y, et al. A Survey of Collaborative Filtering Based Social Recommender Systems. Computer Communications, 2014, 41: 1-10.
[7] 高玉凯,王新华,郭 磊,等.一种基于协同矩阵分解的用户冷启动推荐算法.计算机研究与发展, 2017, 54(8): 1813-1823.
(GAO Y K, WANG X H, GUO L, et al. Learning to Recommend with Collaborative Matrix Factorization for New Users. Journal of Computer Research and Development, 2017, 54(8): 1813-1823.)
[8] 孟祥武,刘树栋,张玉洁,等.社会化推荐系统研究.软件学报, 2015, 26(6): 1356-1372.
(MENG X W, LIU S D, ZHANG Y J, et al. Research on Social Recommender Systems. Journal of Software, 2015, 26(6): 1356-1372.)
[9] JIANG W J, WANG G J, WU J. Generating Trusted Graphs for Trust Evaluation in Online Social Networks. Future Generation Computer Systems, 2014, 31: 48-58.
[10] GOLBECK J A. Computing and Applying Trust in Web-Based Social Networks. Ph.D Dissertation. College Pank, USA: University of Maryland, 2005.
[11] MASSA P, AVESANI P. Trust-Aware Recommender Systems // Proc of the ACM Conference on Recommender Systems. New York, USA: ACM, 2007: 17-24.
[12] KUTER U, GOLBECK J. Using Probabilistic Confidence Models for Trust Inference in Web-Based Social Networks. ACM Transactions on Internet Technology(TOIT), 2010, 10(2). DOI: 10.1145/1754393.1754397.
[13] LEVIEN R. Attack-Resistant Trust Metrics // GOLBECK J, ed. Computing with Social Trust. London, UK: Springer, 2009: 121-132.
[14] ZIEGLER C N, LAUSEN G. Spreading Activation Models for Trust Propagation // Proc of the IEEE International Conference on e-Technology, e-Commerce and e-Service. Washington, USA: IEEE, 2004: 83-97.
[15] JAMALI M, ESTER M. A Transitivity Aware Matrix Factorization Model for Recommendation in Social Networks // Proc of the 22nd International Joint Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2011, III: 2644-2649.
[16] TIROSHI A, KUFLIK T, KAY J, et al. Recommender Systems and the Social Web // Proc of the 19th International Conference on User Modeling, Adaptation, and Personalization. Berlin, Germany: Springer, 2011: 60-70.
[17] TANG J L, HU X, LIU H. Social Recommendation: A Review. Social Network Analysis and Mining, 2013, 3(4): 1113-1133.
[18] MOGHADDAM S, JAMALI M, ESTER M. ETF: Extended Tensor Factorization Model for Personalizing Prediction of Review Helpfulness // Proc of the 5th ACM International Conference on Web Search and Data Mining. New York, USA: ACM, 2012: 163-172.
[19] PURUSHOTHAM S, LIU Y, KUO C C J. Collaborative Topic Regression with Social Matrix Factorization for Recommendation Systems[J/OL]. [2018-03-25]. https://icml.cc/2012/papers/407.pdf.
[20] DAKHEL A M, MALAZI H T, MAHDAVI M. A Social Recommender System Using Item Asymmetric Correlation. Applied Inte-lligence, 2018, 48(3): 527-540.
[21] SALAKHUTDINOV R R, MNIH A. Probabilistic Matrix Factorization[C/OL]. [2018-03-25]. http://papers.nips.cc/paper/3208-probabilistic-matrix-factorization.pdf.
[22] GUO G B, ZHANG J, ZHU F D, et al. Factored Similarity Models with Social Trust for Top-N Item Recommendation. Knowledge-Based Systems, 2017, 122: 17-25.
[23] DAVOUDI A, CHATTERJEE M. Modeling Trust for Rating Prediction in Recommender Systems[C/OL]. [2018-03-25]. http://
pdfs.semanticscholar.org/9d22/83b714be21480efc5f3ca5a8c3783
82cd020.pdf.
[24] WANG J K, ZHANG S S, LIU X, et al. A Novel Collective Matrix Factorization Model for Recommendation with Fin-Grained Social Trust Prediction. Concurrency and Computation: Practice and Experience, 2017, 29(19). DOI: 10.1002/cpe.4233.
[25] YANG B, LEI Y, LIU J M, et al. Social Collaborative Filtering by Trust. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(8): 1633-1647.
[26] 余永红,高 阳,王 皓,等. 融合用户社会地位和矩阵分解的推荐算法.计算机研究与发展, 2018, 55(1): 113-124.
(YU Y H, GAO Y, WANG H, et al. Integrating User Social Status and Matrix Factorization for Item Recommendation. Journal of Computer Research and Development, 2018, 55(1): 113-124.)
[27] GUO G B, ZHANG J, YORKE-SMITH N. TrustSVD: Collabora-
tive Filtering with both the Explicit and Implicit Influence of User Trust and of Item Ratings[C/OL]. [2018-03-25]. https://www.librec.net/luckymoon.me/papers/guo2015trustsvd.pdf. |